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Spatial Abstraction for Autonomous Robot Navigation 
 

Abstract Optimal navigation for a simulated robot 
relies on a detailed map and explicit path planning. 
This approach is problematic for real-world robots, 
whose sensors and actuators are subject to noise 
and error, and whose environment may be dynamic. 
This paper reports on autonomous robots that rely 
on local spatial perception, learning, and com-
monsense rationales instead. Despite realistic actua-
tor error, learned spatial abstractions form a model 
that supports effective travel. 
 
Introduction 
SemaFORR is a navigation system that learns and 
reasons about spatial abstractions, which remove 
perceived but irrelevant details from spatial infor-
mation. The thesis of our work is that spatial ab-
stractions learned from local sensing during travel 
can support effective, autonomous robot navigation. 
The principal result reported here is that our ap-
proach, without planning or a map, quickly produc-
es efficient travel in a variety of spaces (worlds).  

In our robots’ two-dimensional worlds, maps are 
unreliable or unavailable, and landmarks may be 
absent, obscured, or obliterated. Such spaces in-
clude complex office buildings, warehouses, and 
search and rescue environments. SemaFORR 
makes decisions with a cognitive architecture that 
relies on reactive and heuristic procedures based on 
simple rationales and spatial abstractions that de-
scribe where the robot has been. As it travels, the 
robot learns affordances, abstractions that facilitate 
movement and represent the world. These include 
unobstructed areas, useful transit points, and route 
segments. Together they form a model that repre-
sents the world but is not a map.  

This paper reports on SemaFORR’s performance 
in worlds with different connectivity. The next two 
sections describe the abstractions, the robot, and 

how SemaFORR abstracts its experience and rea-
sons about it. Subsequent sections provide experi-
mental methods, results, related research, and a dis-
cussion. 
 
Robots and Learned Abstractions 
A robot’s position in a world is its heading (the di-
rection it faces) and its location (real-valued planar 
coordinates). A robot’s experience is a sequence of 
decision points where it senses, decides, and then 
acts. “Sense” extracts a partial view of the world 
through a wall register of 10 limited-range sensors. 
They calculate the distance to the nearest wall, as in 
Figure 1(a).  

SemaFORR’s spatial abstractions are regions, 
trails, and conveyors. A region, such as that in Fig-
ure 1(a), is an area without permanent obstructions 
(e.g., walls). Wherever the robot senses, it learns a 
region: the circle centered at its location with radius 
equal to the shortest sensed distance. Whenever the 
robot crosses a region’s perimeter, that point be-
comes an exit from the region (shown here as a 
dot). The regions and their exits form a skeleton for 
the space the robot explores, as in Figure 1(b). A 
leaf region has exits only to one other region. (With 
perfect knowledge a leaf region is a dead-end.) A 
trail, such as that in Figure 1(c), is a revision of a 
path that reached a target. Travel along any subse-
quence of a trail in either direction should be relia-
ble. Finally, conveyors, such as those in Figure 
1(d), are small areas regularly used in successful 
travel. A conveyor represents a useful, target-
independent transit point. 

All these abstractions are approximations of a ro-
bot’s experience in its world. If the robot never en-
ters a particular area, it will not be included in its 
model. Regions are disjoint, but can grow or shrink 
as the robot senses in new locations. A trail is not a 

    
 (a) (b) (c) (d) 
 
Fig. 1 Spatial abstractions: (a) a wall register with its inferred region (b) a learned, region-based skeleton 
that treats leaf regions as dead-ends (c) a (dashed) path to the target at top center, with its (solid) inferred 
trail (d) conveyors, where darker cells are visited more often  
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perfect path; it reimagines which locations further 
along its route the robot might have perceived, and 
moved to, sooner. The algorithm that learns con-
veyors superimposes on the world a grid with cells 
1.5 times the size of the robot’s footprint, and in-
crements a cell’s score each time a trail passes 
through it.  

The real-world robot of interest here is a Survey-
or SRV-1 Blackfin, a small, inexpensive robot plat-
form. The Blackfin is subject to actuator error, that 
is, it may imperfectly execute any chosen action. 
The work reported here is in simulation, and mod-
els the actuator error of Blackfins observed in our 
laboratory, where larger actions incur larger errors.  

Traditionally, robots navigate a shortest path that 
they plan in a perfect map. Increasingly sophisticat-
ed mapping and planning techniques have been de-
veloped to contend with such real-world issues as 
moving obstacles, noisy actuators, and dynamic 
worlds. Nonetheless, when its plan fails, the robot 
must repair it or replan.  

 
Reasoning in SemaFORR 
FORR (FOr the Right Reasons) is a cognitive archi-
tecture for the development of expertise (Epstein 
1994). An agent developed within FORR inherits 
its decision mechanism, but specializes it for a par-
ticular application area. SemaFORR is a FORR-
based system that makes robots’ navigation deci-
sions. 

FORR’s decision cycle repeatedly chooses one 
action at a time. Input to SemaFORR’s decision cy-
cle is the robot’s position and wall register, learned 
spatial abstractions, its possible actions and target, 
and a history of its travel to that target. 
SemaFORR’s possible actions are 5 forward linear 
moves of various lengths, 10 clockwise or counter-
clockwise turns of various degrees, and a pause (do 
nothing). SemaFORR alternately chooses a move or 
pause on one decision cycle and then a turn or 
pause on the next. (Intermediate pauses support 
longer consecutive moves or turns.) 

FORR’s “right reasons” are called Advisors. 
Each is a salient preference mechanism for action 
selection, implemented as a time-limited procedure. 
During a decision cycle, an Advisor produces 
comments on possible actions. A comment’s nu-
merical strength indicates the Advisor’s degree of 
support or opposition to the action.  

SemaFORR’s tier-1 Advisors are presequenced, 
quick, correct, commonsense reasons for action se-
lection. If the target is perceived, they select an ac-
tion that drives the robot toward it; otherwise they 
eliminate actions that would cause a collision (with 
a wall or another robot) or oscillation in place. All 
remaining possible actions are forwarded to tier 3. 

(Tier 2 is the focus of current work on reactive 
planning.) 

SemaFORR’s tier-3 Advisors are heuristic and 
comment together. They are sensible but imperfect 
reasons for action selection. There are Advisors for 
“take any large action,” “go where there is room to 
move,” “go to unfamiliar locations,” “turn to avoid 
a nearby obstacle,” and “get closer to the target.” 
When multiple robots navigate simultaneously, 
there are also Advisors for “go where there is less 
traffic.” 

SemaFORR also has tier-3 Advisors that com-
ment based on learned spatial abstractions. Some 
Advisors prefer high-scoring conveyors, particular-
ly those further away. Other Advisors select likely 
subsequences of a trail, whose decision points serve 
as attractors, not as a plan. Still other Advisors ex-
ploit the skeleton; they support entrance into a re-
gion that contains the target, and exit from or 
avoidance of leaf regions that do not.   

Voting sums the comment strengths of all tier-3 
Advisors for each possible action, and selects the 
action with maximum support. Ties are broken at 
random. See (Epstein et al. 2015) for further details 
on the reasoning mechanism.  

 
Method 
We test navigation in three worlds with different 
connectivity and a single robot. The task is to visit 
(come within ε of) the locations of 5 sets of 40 ran-
domly generated, randomly ordered targets in each 
world. There is a 250-decision limit per target. Per-
formance metrics include distance travelled, per-
centage of targets reached, and total time to sense, 
decide, move, and learn. We average performance 
over 5 executions of each set of 40 targets, 1000 
targets per world in all. Differences cited here are 
statistically significant at p < 0.05. 

We compare SemaFORR to SemaFORR-A*, an 
ideal navigator for this task. SemaFORR-A* has an 
accurate map of the world, discretized by a grid. It 
plans a shortest path within that map as a sequence 
of waypoints, selects only the smallest moves and 
turns (to reduce actuator error), and replans when 
waypoints become inaccessible. To determine how 
spatial abstractions facilitate navigation, we also 
tested several restricted versions of SemaFORR 
with reduced sets of tier-3 Advisors. Each restricted 
version included all commonsense Advisors plus 
Advisors for only one spatial abstraction: regions, 
trails, or conveyors.  
 
Results  
As Table 1 shows, SemaFORR quickly produces 
efficient travel without planning or a map. 
SemaFORR rarely failed to reach a target, and in 



 

 

4 

world B it is just as fast as SemaFORR-A*. (The 
apparent speedup in world B is not statistically sig-
nificant, as are any other differences unaddressed in 
this section.) In worlds A and C, SemaFORR is on-
ly 18% and 14% slower than SemaFORR-A*, re-
spectively. Both systems devote most of their time 
to movement: 81% for SemaFORR-A* and 82% for 
SemaFORR. Learning required less than 1% of 
SemaFORR’s time in every world. 

Differences in variance between SemaFORR-A* 
and SemaFORR are attributable in part to actuator 
error. Recall that SemaFORR-A* takes only the 
smallest possible actions, and is therefore subject to 
less egregious errors. This presumably accounts for 
much of the difference in their distances as well.  

The learned spatial models clearly capture most 
rooms and hallways in all three worlds. Figure 2 
shows models learned from one execution for one 
setting in each world. Despite actuator error and 
randomized targets, models learned for any given 
world are quite similar across settings.  

In all three worlds, the restricted version with 
trails (SemaFORR-T) outperformed the other re-
stricted versions. It was faster and traveled less far 
than the restricted version with regions in world C. 
SemaFORR-T also always outperformed the re-
stricted version with conveyors, except on time in 
world C.  

We also (nearly) evenly partitioned 40 targets 
among 3 robots and had them navigate simultane-
ously. In preliminary testing, their individual 
learned models are remarkably similar. Figure 3 
shows three such models in world A. 

 
Related Work 
Human navigators without a metric map do not 
construct a mental one (Tversky 1993; Zetzsche et 
al. 2009). SemaFORR’s Advisors exploit research 
on how people perceive, envision, describe, and 
navigate through space (e.g., (Golledge 1999)). 
FORR’s use of multiple Advisors mirrors people’s 
reliance on multiple wayfinding strategies to select 

Table 1: Performance means and standard deviations in three worlds. SemaFORR-A* plans from a map; 
SemaFORR is reactive and learns spatial abstractions instead. SemaFORR-T, the version restricted to 
trails, uses commonsense, exploration, and one spatial abstraction 
 

 SemaFORR-A* SemaFORR     SemaFORR-T 
World A µ σ µ σ µ σ 
Time 1035.89 8.66 1221.19 150.42 1163.75 30.71 
Distance 400.06 13.30 854.49 35.73 812.95 30.39 
Success rate 100.00  0.00 99.50 2.23 99.50 2.23 
World B      
Time 884.58 6.02 835.31 92.54 867.23 25.19 
Distance 335.14 10.40 554.93 24.93 612.59 26.97 
Success rate 100.00  0.00 99.70 1.73 99.80 1.41 
World C       
Time 1119.93 10.70 1273.69 124.38 1277.95 27.51 
Distance 437.87 12.77 798.18 27.18 775.72 27.35 
Success rate 100.00  0.00 99.80 1.41 99.60 2.00 

     
 (a) (b)  (c) 
Fig. 2 After navigation to 40 targets, one robot’s learned spatial models, superimposed on their respective 
maps. Regions are shown as circles with dots along their perimeters for exits. Conveyors are grid squares; 
darker ones were used more often in successful travel. Trails are lines with dots at decision points. (a) 
World A’s office space, (b) world B’s rotunda, and (c) world C’s warehouse. Note the learned diagonal 
conveyor “hallways” in world B and the emphasized perimeter in world C.  
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routes (Takemiya and Ishikawa 2013; Tenbrink et 
al. 2011).  

SemaFORR’s wall register is similar to human 
reference frames (Battles and Fu 2014; Meilinger 
2008). Its use of regions (Hölscher et al. 2011; 
Reineking et al. 2008)), conveyors (Meilinger 
2008), and trails (Hamburger et al. 2013) is based 
on human behavior, as is its penchant for explora-
tion (Speekenbrink and Konstantinidis 2014). 

 
Conclusion 
Because SemaFORR’s learning is both heuristic 
and dependent on experience, its models may be in-
complete and overlook or overly emphasize parts of 
a world. One subject of current work is a shared 
model, produced and accessed by a team of robots. 
This is appropriate for the robots of HRTeam (Hu-
man-Robot Team) which SemaFORR is ultimately 
intended to operate (Sklar et al. 2011). The Black-
fins in our laboratory now each make decisions 
with their own copy of SemaFORR-A*.  

SemaFORR will eventually explain its decisions 
to the human member of HRTeam. Advisors that 
support a decision provide readily understandable 
reasons (e.g., “let’s go this way because the other is 
a dead-end and this should bring us closer to the 
target”). In summary, robots can learn to navigate 
well from local perception. With SemaFORR, a ro-
bot quickly becomes proficient, and produces a 
world model that provides important information, 
both for people and for other robots. 
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